The Association of Lung Cancer Mortality with Income and Education in Kentucky Counties

David A. Gross

Abstract

Lung/bronchus cancer is the primary cause of cancer death in the United States, with more than 160,000 deaths attributed to the disease during the year 2007 alone. The predominant risk factor for this type of cancer is tobacco smoking. With the nation’s highest rate of adult smokers (28.3 percent), the disease is particularly problematic in Kentucky. The state’s lung/bronchus cancer mortality rate – 80 deaths per 100,000 population – is much higher than the national average of 55. Indeed, each of Kentucky’s 120 counties has a lung cancer death rate that exceeds the national average.

This research project examines the lung/bronchus cancer death rates in Kentucky’s 54 Appalachian counties (primarily those in the eastern and southern regions of the state) compared to rates in its 66 non-Appalachian counties (those located in the central, northern and western regions). Most (38) of the state’s Appalachian counties have been designated as “distressed” by the Appalachian Regional Commission based on their multi-year rates of low per capita income and elevated rates of poverty and unemployment.

This project analyzes whether relationships exist between county-level lung/bronchus cancer death rates and counties’ high school graduation rates, per capita personal income, adult smoking rates and designation as an Appalachian county.

Hypotheses

1. The lower a county’s high school graduation rate, the higher its lung/bronchus death rate will be.
2. The lower a county’s per capita personal income, the higher its lung/bronchus cancer death rate will be.

Data and Methods

The primary data source for this study was the Kentucky Institute of Medicine’s 2007 report, “The Health of Kentucky: A County Assessment.” This document analyzed Kentucky counties’ health status based on 25 different health-related measures, which were used to produce a 1-120 ranking. Because of variation in the number of deaths each year, data were combined for multiple years (1997-2004) to produce more stable rates for some measures.

The variables examined here are: lung/bronchus cancer deaths per 100,000 population, with data derived from the Kentucky Cancer Registry Inquiry System; high school graduation (percentage of adults 25 years or older who have graduated from high school), from the U.S. Census Bureau and Kentucky State Data Center; per capita personal income, or the “mean income computed for every man, woman and a particular group,” from the Bureau of Economic Analysis, U.S. Department of Commerce; and prevalence of smoking (percent of adult population), from the Kentucky Behavioral Risk Factor Surveillance Survey. Appalachian counties in Kentucky were designated by the Appalachian Regional Commission.

The data were analyzed using the Statistical Package for the Social Sciences (SPSS). Independent samples t-tests determined whether the means for the study variables differed to a statistically significant degree between Kentucky’s Appalachian and non-Appalachian counties. Correlation coefficients were calculated to determine whether statistical relationships exist between the dependent variable (lung/bronchus cancer death rate) and the independent variables (high school graduation rate, per capita personal income and adult smoking rate). Simple and multiple regression analyses were carried out to predict counties’ lung/bronchus cancer death rates as a function of each independent variable.

1. The lower a county’s high school graduation rate, the higher its lung/bronchus death rate will be.
2. The lower a county’s per capita personal income, the higher its lung/bronchus cancer death rate will be.

Table 1: Differences Between Kentucky Counties for Various Health Indicators

Health Indicator	Appalachian Counties n = 54	Non-Appalachian Counties n = 66	Coefficient	Standard Error	t	Sig.
Lung/bronchus death rate per 100,000 population	199.6	19.2	.214	.039	6.17	.000*
Per capita personal income	$27,050	$26,184	.73	.01	7.07	.000**
Adult smoking rate	28%	27%	.057	.01	4.49	.000**

Note: t-tests were conducted to examine the difference between the means of the two groups. The significance level is set at .05.

Table 2: Correlation Results for Predictors of Lung Cancer Deaths

Predictor	Correlation Coefficient	Standard Error	Sig.
High school graduation rate	.72	.06	.000**
Per capita personal income	.47	.07	.000**
Adult smoking rate	.35	.04	.000**

Note: t-tests were conducted to examine the difference between the means of the two groups. The significance level is set at .05.

Table 3: Statewide Ordinary Least Squares Regression Results – Lung Cancer Death Rates

Predictor	Standardized Coefficient	t	Sig.
High school graduation rate	.75	7.73	.000**
Per capita personal income	.32	3.47	.000**
Adult smoking rate	.25	2.13	.036

Conclusions

1. This study found associations in the hypothesized direction for lung cancer death rates with each independent variable, as well as statistically significant differences between Kentucky’s Appalachian and non-Appalachian counties for each variable except adult smoking rate.

2. Adult smoking rates were similar in Appalachian and non-Appalachian counties in Kentucky and were not significantly associated with counties’ lung cancer death rates in multiple regression analyses that included high school graduation rates and per capita personal income. In the context of similar adult smoking rates, lower high school graduation rates were significantly associated with increased lung cancer mortality rates.

3. Appalachian counties had significantly lower high school graduation rates, and graduation rates showed the strongest statistical association with lung cancer mortality rates, which may be the explanation for higher lung cancer mortality in Appalachian counties. Among other things, education level can influence occupation, amount of disposable income, adherence to healthy behaviors and participation in health promotional and screening programs.

4. This finding suggests that Kentucky’s emphasis on improving graduation rates (resulting in a 6.2 percentage point gain during a recent 5-year period) may reduce lung cancer mortality overall and has the potential to address health disparities between Appalachian and non-Appalachian counties if graduation rates in Appalachian Kentucky catch up with the rest of the state.

Literature Review

Deaton (2002) has noted that “one of the clearest messages from the literature is that health and wealth are mutually determined.” Of particular relevance to this project is the fact that smoking rates generally are higher among the poor and less educated.

Gorey and Vena (1995) tracked New York State Cancer Registry data for nearly 42,000 cases and found that near poverty status, in and of itself, is a cancer risk factor. For instance, the lung cancer rate for women living in high-poverty areas – those with census tracts in which more than half of residents were below 200 percent of the federal poverty level – was approximately twice that observed among women living in areas with lower poverty rates.

Hemminki and Li (2003) analyzed approximately 760,000 invasive cancer cases in Sweden, with subjects identified according to educational attainment. While overall cancer risks showed only minimal differences based on education, some site-specific cancers varied significantly depending upon educational group.

Lung cancer, for instance, was much less common in those who were university educated (standardized incidence ratio of 0.47) as opposed to those with less than nine years of education (standardized incidence ratio of 1.00).

Works Cited

